207 research outputs found

    Kappa Counterconditioning of Cocaine Cues

    Get PDF

    L-Tetrahydropalamatine: A Potential New Medication for the Treatment of Cocaine Addiction

    Get PDF
    Levo-tetrahydropalmatine (l-THP) is an active constituent of herbal preparations containing plant species of the genera Stephania and Corydalis and has been approved and used in China for a number of clinical indications under the drug name Rotundine. The pharmacological profile of l-THP, which includes antagonism of dopamine D1 and D2 receptors and actions at dopamine D3, α adrenergic and serotonin receptors, suggests that it may have utility for treating cocaine addiction. In this review, we provide an overview of the pharmacological properties of l-THP and the evidence supporting its development as an anti-addiction medication. The results of preclinical work demonstrating that l-THP attenuates cocaine’s reinforcing/rewarding effects and reinstatement in rat models of cocaine relapse are summarized, and the outcomes of studies demonstrating efficacy in human addicts are described. Finally, an overview of the safety profile of l-THP is provided and challenges associated with US FDA approval of l-THP are discussed

    Neuroadaptations in the Cellular and Postsynaptic Group 1 Metabotropic Glutamate Receptor mGluR5 and Homer Proteins Following Extinction of Cocaine Self-administration

    Get PDF
    This study examined the role of group1 metabotropic glutamate receptor mGluR5 and associated postsynaptic scaffolding protein Homer1b/c in behavioral plasticity after three withdrawal treatments from cocaine self-administration. Rats self-administered cocaine or saline for 14 days followed by a withdrawal period during which rats underwent extinction training, remained in their home cages, orwere placed in the self-administration chambers in the absence of extinction. Subsequently, the tissue level and distribution of proteins in the synaptosomal fraction associated with the postsynaptic densitywere examined. Cocaine self-administration followed by home cage exposure reduced the mGluR5 protein in nucleus accumbens (NA) shell and dorsolateral striatum. While extinction training reduced mGluR5 protein in NAshell, NAcore and dorsolateral striatum did not display any change. The scaffolding protein PSD95 increased in NAcore of the extinguished animals. Extinction of drug seeking was associated with a significant decrease in the synaptosomal mGluR5 protein in NAshell and an increase in dorsolateral striatum, while that of NAcore was not modified. Interestingly, both Homer1b/c and PSD95 scaffolding proteins were decreased in the synaptosomal fraction after extinction training in NAshell but not NAcore. Extinguished drug-seeking behavior was also associated with an increase in the synaptosomal actin proteins in dorsolateral striatum. Therefore, extinction of cocaine seeking is associated with neuroadaptations in mGluR5 expression and distribution that are region-specific and consist of extinction-induced reversal of cocaine-induced adaptations aswell as emergent extinction-induced alterations. Concurrent plasticity in the scaffolding proteins further suggests that mGluR5 receptor neuroadaptations may have implications for synaptic function

    Glutamatergic Plasticity in Medial Prefrontal Cortex and Ventral Tegmental Area Following Extended-Access Cocaine Self-Administration

    Get PDF
    Glutamate signaling in prefrontal cortex and ventral tegmental area plays an important role in the molecular and behavioral plasticity associated with addiction to drugs of abuse. The current study investigated the expression and postsynaptic density redistribution of glutamate receptors and synaptic scaffolding proteins in dorsomedial and ventromedial prefrontal cortex and ventral tegmental area after cocaine self-administration. After 14 days of extended-access (6 h/day) cocaine self-administration, rats were exposed to one of three withdrawal regimen for 10 days. Animals either stayed in home cages (Home), returned to self-administration boxes with the levers withdrawn (Box), or underwent extinction training (Extinction). Extinction training was associated with significant glutamatergic plasticity. In dorsomedial prefrontal cortex of the Extinction group, there was an increase in postsynaptic density GluR1, PSD95, and actin proteins; while postsynaptic density mGluR5 protein decreased and there was no change in NMDAR1, Homer1b/c, or PICK1 proteins. These changes were not observed in ventromedial prefrontal cortex or ventral tegmental area. In ventral tegmental area, Extinction training reversed the decreased postsynaptic density NMDAR1 protein in the Home and Box withdrawal groups. These data suggest that extinction of drug seeking is associated with selective glutamatergic plasticity in prefrontal cortex and ventral tegmental area that include modulation of receptor trafficking to postsynaptic density

    Stress-Induced Cocaine Seeking Requires a Beta-2 Adrenergic Receptor-Regulated Pathway from the Ventral Bed Nucleus of the Stria Terminalis That Regulates CRF Actions in the Ventral Tegmental Area

    Get PDF
    The ventral bed nucleus of the stria terminalis (vBNST) has been implicated in stress-induced cocaine use. Here we demonstrate that, in the vBNST, corticotropin releasing factor (CRF) is expressed in neurons that innervate the ventral tegmental area (VTA), a site where the CRF receptor antagonist antalarmin prevents the reinstatement of cocaine seeking by a stressor, intermittent footshock, following intravenous self-administration in rats. The vBNST receives dense noradrenergic innervation and expresses β adrenergic receptors (ARs). Footshock-induced reinstatement was prevented by bilateral intra-vBNST injection of the β-2 AR antagonist, ICI-118,551, but not the β-1 AR antagonist, betaxolol. Moreover, bilateral intra-vBNST injection of the β-2 AR agonist, clenbuterol, but not the β-1 agonist, dobutamine, reinstated cocaine seeking, suggesting that activation of vBNST β-2 AR is both necessary for stress-induced reinstatement and sufficient to induce cocaine seeking. The contribution of a β-2 AR-regulated vBNST-to-VTA pathway that releases CRF was investigated using a disconnection approach. Injection of ICI-118,551 into the vBNST in one hemisphere and antalarmin into the VTA of the contralateral hemisphere prevented footshock-induced reinstatement, whereas ipsilateral manipulations failed to attenuate stress-induced cocaine seeking, suggesting that β-2 AR regulate vBNST efferents that release CRF into the VTA, activating CRF receptors, and promoting cocaine use. Last, reinstatement by clenbuterol delivered bilaterally into the vBNST was prevented by bilateral vBNST pretreatment with antalarmin, indicating that β-2 AR-mediated actions in the vBNST also require local CRF receptor activation. Understanding the processes through which stress induces cocaine seeking should guide the development of new treatments for addiction

    Drug-Induced Plasticity Contributing to Heightened Relapse Susceptibility: Neurochemical Changes and Augmented Reinstatement in High-Intake Rats

    Get PDF
    A key in understanding the neurobiology of addiction and developing effective pharmacotherapies is revealing drug-induced plasticity that results in heightened relapse susceptibility. Previous studies have demonstrated that increased extracellular glutamate, but not dopamine, in the nucleus accumbens core (NAcc) is necessary for cocaine-induced reinstatement. In this report, we examined whether drug-induced adaptations that are necessary to generate cocaine-induced reinstatement also determine relapse vulnerability. To do this, rats were assigned to self-administer cocaine under conditions resulting in low (2 h/d; 0.5 mg/kg/infusion, i.v.) or high (6 h/d; 1.0 mg/kg/infusion, i.v.) levels of drug intake since these manipulations produce groups of rats exhibiting differences in the magnitude of cocaine-induced reinstatement. Approximately 19 d after the last session, cocaine-induced drug seeking and extracellular levels of glutamate and dopamine in the NAcc were measured. Contrary to our hypothesis, high-intake rats exhibited a more robust cocaine-induced increase in extracellular levels of dopamine but not glutamate. Further, increased reinstatement in high-intake rats was no longer observed when the D1 receptor antagonist SCH-23390 was infused into the NAcc. The sensitized dopamine response to cocaine in high-intake rats may involve blunted cystine–glutamate exchange by system xc−. Reduced 14C-cystine uptake through system xc− was evident in NAcc tissue slices obtained from high-intake rats, and the augmented dopamine response in these rats was no longer observed when subjects received the cysteine prodrug N-acetyl cysteine. These data reveal a role for drug-induced NAcc dopamine in heightened relapse vulnerability observed in rats with a history of high levels of drug intake

    Antagonism of GABA-B but not GABA-A receptors in the VTA prevents stress- and intra-VTA CRF-induced reinstatement of extinguished cocaine seeking in rats

    Get PDF
    Stress-induced reinstatement of cocaine seeking requires corticotropin releasing factor (CRF) actions in the ventral tegmental area (VTA). However the mechanisms through which CRF regulates VTA function to promote cocaine use are not fully understood. Here we examined the role of GABAergic neurotransmission in the VTA mediated by GABA-A or GABA-B receptors in the reinstatement of extinguished cocaine seeking by a stressor, uncontrollable intermittent footshock, or bilateral intra-VTA administration of CRF. Rats underwent repeated daily cocaine self-administration (1.0 mg/kg/ing; 14 × 6 h/day) and extinction and were tested for reinstatement in response to footshock (0.5 mA, 0.5” duration, average every 40 s; range 10–70 s) or intra-VTA CRF delivery (500 ng/side) following intra-VTA pretreatment with the GABA-A antagonist, bicuculline, the GABA-B antagonist, 2-hydroxysaclofen or vehicle. Intra-VTA bicuculline (1, 10 or 20 ng/side) failed to block footshock- or CRF-induced cocaine seeking at either dose tested. By contrast, 2-hydroxysaclofen (0.2 or 2 μg/side) prevented reinstatement by both footshock and intra-VTA CRF at a concentration that failed to attenuate food-reinforced lever pressing (45 mg sucrose-sweetened pellets; FR4 schedule) in a separate group of rats. These data suggest that GABA-B receptor-dependent CRF actions in the VTA mediate stress-induced cocaine seeking and that GABA-B receptor antagonists may have utility for the management of stress-induced relapse in cocaine addicts

    Blunted Cystine–Glutamate Antiporter Function in the Nucleus Accumbens Promotes Cocaine-induced Drug Seeking

    Get PDF
    Repeated cocaine alters glutamate neurotransmission, in part, by reducing cystine–glutamate exchange via system xc−, which maintains glutamate levels and receptor stimulation in the extrasynaptic compartment. In the present study, we undertook two approaches to determine the significance of plasticity involving system xc−. First, we examined whether the cysteine prodrug N-acetylcysteine attenuates cocaine-primed reinstatement by targeting system xc−. Rats were trained to self-administer cocaine (1 mg/kg/200 μl, i.v.) under extended access conditions (6 h/day). After extinction training, cocaine (10 mg/kg, i.p.) primed reinstatement was assessed in rats pretreated with N-acetylcysteine (0–60 mg/kg, i.p.) in the presence or absence of the system xc− inhibitor (S)-4-carboxyphenylglycine (CPG; 0.5 μM; infused into the nucleus accumbens). N-acetylcysteine attenuated cocaine-primed reinstatement, and this effect was reversed by co-administration of CPG. Secondly, we examined whether reduced system xc− activity is necessary for cocaine-primed reinstatement. To do this, we administered N-acetylcysteine (0 or 90 mg/kg, i.p.) prior to 12 daily self-administration sessions (1 mg/kg/200 μl, i.v.; 6 h/day) since this procedure has previously been shown to prevent reduced activity of system xc−. On the reinstatement test day, we then acutely impaired system xc− in some of the rats by infusing CPG (0.5 μM) into the nucleus accumbens. Rats that had received N-acetylcysteine prior to daily self-administration sessions exhibited diminished cocaine-primed reinstatement; this effect was reversed by infusing the cystine–glutamate exchange inhibitor CPG into the nucleus accumbens. Collectively these data establish system xc− in the nucleus accumbens as a key mechanism contributing to cocaine-primed reinstatement

    Cannabinoid Receptor Involvement in Stress-Induced Cocaine Reinstatement: Potential Interaction with Noradrenergic Pathways

    Get PDF
    This study examined the role of endocannabinoid signaling in stress-induced reinstatement of cocaine seeking and explored the interaction between noradrenergic and endocannabinergic systems in the process. A well-validated preclinical model for human relapse, the rodent conditioned place preference assay, was used. Cocaine-induced place preference was established in C57BL/6 mice using injections of 15 mg/kg cocaine. Following extinction of preference for the cocaine-paired environment, reinstatement of place preference was determined following 6 min of swim stress or cocaine injection (15 mg/kg, i.p.). The role of endocannabinoid signaling was studied using the cannabinoid antagonist AM-251 (3 mg/kg, i.p.). Another cohort of mice was tested for reinstatement following administration of the cannabinoid agonist CP 55,940 (10, 20, or 40 μg/kg, i.p.). The alpha-2 adrenergic antagonist BRL-44408 (5 mg/kg, i.p.) with or without CP 55,940 (20 μg/kg) was administered to a third group of mice. We found that: (1) AM-251 blocked forced swim-induced, but not cocaine-induced, reinstatement of cocaine-seeking behavior; (2) the cannabinoid agonist CP 55,940 did not reinstate cocaine-seeking behavior when administered alone but did synergize with a non-reinstating dose of the alpha-2 adrenergic antagonist BRL-44408 to cause reinstatement. These results are consistent with the hypothesis that stress exposure triggers the endogenous activation of CB1 receptors and that activation of the endocannabinoid system is required for the stress-induced relapse of the mice to cocaine seeking. Further, the data suggest that the endocannabinoid system interacts with noradrenergic mechanisms to influence stress-induced reinstatement of cocaine-seeking behavior

    Augmented Cocaine Seeking in Response to Stress or CRF Delivered into the Ventral Tegmental Area Following Long-Access Self-Administration Is Mediated by CRF Receptor Type 1 But Not CRF Receptor Type 2

    Get PDF
    Stressful events are determinants of relapse in recovering cocaine addicts. Excessive cocaine use may increase susceptibility to stressor-induced relapse through alterations in brain corticotropin-releasing factor (CRF) regulation of neurocircuitry involved in drug seeking. We previously reported that the reinstatement of cocaine seeking by a stressor (footshock) is CRF dependent and is augmented in rats that self-administered cocaine under long-access (LgA; 6 h daily) conditions for 14 d when compared with rats provided shorter daily cocaine access [short access (ShA) rats; 2 h daily]. Further, we have demonstrated that reinstatement in response to intracerebroventricular CRF administration is heightened in LgA rats. This study examined the role of altered ventral tegmental area (VTA) responsiveness to CRF in intake-dependent increases in CRF- and stress-induced cocaine seeking. Bilateral intra-VTA administration of CRF (250 or 500 ng/side) produced reinstatement in LgA but not ShA rats. In LgA rats, intra-VTA CRF-induced reinstatement was blocked by administration of the CRF-receptor type 1 (CRF-R1) antagonist antalarmin (500 ng/side) or CP-376395 (500 ng/side), but not the CRF-R2 antagonist astressin-2B (500 ng or 1 μg/side) or antisauvagine-30(ASV-30; 500 ng/side) into the VTA. Likewise, intra-VTA antalarmin, but not astressin-2B, blocked footshock-induced reinstatement in LgA rats. By contrast, neither intra-VTA antalarmin nor CP-376395 altered food-reinforced lever pressing. Intra-VTA injection of the CRF-R1-selective agonist cortagine (100 ng/side) but not the CRF-R2-selective agonist rat urocortin II (rUCN II; 250 ng/side) produced reinstatement. These findings reveal that excessive cocaine use increases susceptibility to stressor-induced relapse in part by augmenting CRF-R1-dependent regulation of addiction-related neurocircuitry in the VTA
    corecore